On the forced unilateral orientation number of a graph
نویسندگان
چکیده
منابع مشابه
Bounds on the restrained Roman domination number of a graph
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
متن کاملOn a conjecture concerning the orientation number of a graph
For a connected graph G containing no bridges, let D(G) be the family of strong orientations of G; and for any D ∈ D(G), we denote by d(D) the diameter of D. The orientation number −→ d (G) of G is defined by −→ d (G) = min{d(D)|D ∈ D(G)}. Let G(p, q;m) denote the family of simple graphs obtained from the disjoint union of two complete graphs K p and Kq by adding m edges linking them in an arbi...
متن کاملUniform Number of a Graph
We introduce the notion of uniform number of a graph. The uniform number of a connected graph $G$ is the least cardinality of a nonempty subset $M$ of the vertex set of $G$ for which the function $f_M: M^crightarrow mathcal{P}(X) - {emptyset}$ defined as $f_M(x) = {D(x, y): y in M}$ is a constant function, where $D(x, y)$ is the detour distance between $x$ and $y$ in $G$ and $mathcal{P}(X)$ ...
متن کاملthe effect of consciousness raising (c-r) on the reduction of translational errors: a case study
در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1998
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(97)00233-1